About 507,000 results
Open links in new tab
  1. regression - When should I use lasso vs ridge? - Cross Validated

    Ridge regression is useful as a general shrinking of all coefficients together. It is shrinking to reduce the variance and over fitting. It relates to the prior believe that coefficient values …

  2. How to describe or visualize a multiple linear regression model

    Then this simplified version can be visually shown as a simple regression as this: I'm confused on this in spite of going through appropriate material on this topic. Can someone please explain to …

  3. regression - How to calculate the slope of a line of best fit that ...

    Dec 17, 2024 · This kind of regression seems to be much more difficult. I've read several sources, but the calculus for general quantile regression is going over my head. My question is this: …

  4. How should outliers be dealt with in linear regression analysis?

    What statistical tests or rules of thumb can be used as a basis for excluding outliers in linear regression analysis? Are there any special considerations for multilinear regression?

  5. Multivariable vs multivariate regression - Cross Validated

    Feb 2, 2020 · Multivariable regression is any regression model where there is more than one explanatory variable. For this reason it is often simply known as "multiple regression". In the …

  6. regression - When is R squared negative? - Cross Validated

    Also, for OLS regression, R^2 is the squared correlation between the predicted and the observed values. Hence, it must be non-negative. For simple OLS regression with one predictor, this is …

  7. What's the difference between correlation and simple linear …

    Aug 1, 2013 · Note that one perspective on the relationship between regression & correlation can be discerned from my answer here: What is the difference between doing linear regression on …

  8. Support Vector Regression vs. Linear Regression - Cross Validated

    Dec 5, 2023 · Linear regression can use the same kernels used in SVR, and SVR can also use the linear kernel. Given only the coefficients from such models, it would be impossible to …

  9. What do the residuals in a logistic regression mean?

    In answering this question John Christie suggested that the fit of logistic regression models should be assessed by evaluating the residuals. I'm familiar with how to interpret residuals in OLS, t...

  10. correlation - What is the difference between linear regression on y ...

    The Pearson correlation coefficient of x and y is the same, whether you compute pearson(x, y) or pearson(y, x). This suggests that doing a linear regression of y given x or x given y should be …