The way the brain develops can shape us throughout our lives, so neuroscientists are intensely curious about how it happens.
Abstract: Recently, topological graphs based on structural or functional connectivity of brain network have been utilized to construct graph neural networks (GNN) for Electroencephalogram (EEG) ...
Learn how Network in Network (NiN) architectures work and how to implement them using PyTorch. This tutorial covers the concept, benefits, and step-by-step coding examples to help you build better ...
Graph Neural Networks (GNNs) and GraphRAG don’t “reason”—they navigate complex, open-world financial graphs with traceable, multi-hop evidence. Here’s why BFSI leaders should embrace graph-native AI ...
Introduction: Emotion recognition based on electroencephalogram (EEG) signals has shown increasing application potential in fields such as brain-computer interfaces and affective computing. However, ...
Machine learning and neural nets can be pretty handy, and people continue to push the envelope of what they can do both in high end server farms as well as slower systems. At the extreme end of the ...
Abstract: Graph neural networks (GNNs) have shown promise in graph classification tasks, but they struggle to identify out-of-distribution (OOD) graphs often encountered in real-world scenarios, ...
BingoCGN employs cross-partition message quantization to summarize inter-partition message flow, which eliminates the need for irregular off-chip memory access and utilizes a fine-grained structured ...
If you’re like me, you’ve heard plenty of talk about entity SEO and knowledge graphs over the past year. But when it comes to implementation, it’s not always clear which components are worth the ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results